Computation of Tangent, Euler, and Bernoulli Numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast computation of Bernoulli, Tangent and Secant numbers

We consider the computation of Bernoulli, Tangent (zag), and Secant (zig or Euler) numbers. In particular, we give asymptotically fast algorithms for computing the first n such numbers in O(n2(logn)2+o(1)) bit-operations. We also give very short in-place algorithms for computing the first n Tangent or Secant numbers in O(n2) integer operations. These algorithms are extremely simple, and fast fo...

متن کامل

Explicit Formulas for Bernoulli and Euler Numbers

Explicit and recursive formulas for Bernoulli and Euler numbers are derived from the Faá di Bruno formula for the higher derivatives of a composite function. Along the way we prove a result about composite generating functions which can be systematically used to derive such identities.

متن کامل

Congruences involving Bernoulli and Euler numbers

Let [x] be the integral part of x. Let p > 5 be a prime. In the paper we mainly determine P[p/4] x=1 1 xk (mod p2), p−1 [p/4] (mod p3), Pp−1 k=1 2 k (mod p3) and Pp−1 k=1 2 k2 (mod p2) in terms of Euler and Bernoulli numbers. For example, we have

متن کامل

Arithmetic Identities Involving Bernoulli and Euler Numbers

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of algebraic closure of Qp, respectively. The p-adic norm is normalized so that |p|p 1/p. Let N be the set of natural numbers and Z N ∪ {0}. Let UD Zp be the space of uniformly differentiable functions on Zp. For f ∈ ...

متن کامل

Arithmetical Properties of Elliptic Bernoulli and Euler Numbers

We introduce elliptic analogues to the Bernoulli ( resp. Euler) numbers and functions. The first aim of this paper is to state and prove that our elliptic Bernoulli and Euler functions satisfied Raabe’s formulas (cf. Theorems 3.1.1, 3.2.1). We define two kinds of elliptic Dedekind-Rademacher sums, in terms of values of our elliptic Bernoulli (resp. Euler) functions. The second aim of this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1967

ISSN: 0025-5718

DOI: 10.2307/2005010